contoh soal dan penyelesaian pertidaksamaan rasional dan irasional
Matematika
septrin
Pertanyaan
contoh soal dan penyelesaian pertidaksamaan rasional dan irasional
1 Jawaban
-
1. Jawaban MathTutor
Kelas : 10
Mapel : Matematika
Kategori : Pertidaksamaan
Kata Kunci : pertidaksamaan, rasional, irasional
Kode : 10.2.4 [Kelas 10 Matematika KTSP - Pertidaksamaan]
Pembahasan :
Bentuk umum pertidaksamaan bentuk rasional atau hasil bagi dua faktor linier adalah
[tex] \frac{ax+b}{cx+d} [/tex] < 0,
[tex] \frac{ax+b}{cx+d} [/tex] > 0,
[tex] \frac{ax+b}{cx+d} [/tex] ≤ 0,
[tex] \frac{ax+b}{cx+d} [/tex] ≥ 0,
dengan cx + d ≠ 0.
Pertidaksamaan berbentuk
[tex] \frac{ax+b}{cx+d} [/tex] < 0
⇔ (ax + b)(cx + d) < 0
sehingga penyelesaiannya [tex] \frac{-d}{c} [/tex] < x < [tex] \frac{-b}{a} [/tex].
[tex] \frac{ax+b}{cx+d} [/tex] ≤ 0
⇔ (ax + b)(cx + d) ≤ 0
sehingga penyelesaiannya [tex] \frac{-d}{c} [/tex] < x ≤ [tex] \frac{-b}{a} [/tex].
[tex] \frac{ax+b}{cx+d} [/tex] > 0
⇔ (ax + b)(cx + d) > 0
sehingga penyelesaiannya x < [tex] \frac{-d}{c} [/tex] atau x > [tex] \frac{-b}{a} [/tex].
[tex] \frac{ax+b}{cx+d} [/tex] ≥ 0
⇔ (ax + b)(cx + d) ≥ 0
sehingga penyelesaiannya x < [tex] \frac{-d}{c} [/tex] atau x ≥ [tex] \frac{-b}{a} [/tex].
Contoh : https://brainly.co.id/tugas/12730078
Bentuk umum pertidaksamaan bentuk irasional atau bentuk akar adalah
Jika [tex] \sqrt{f(x)} [/tex] > a dan a ≥ 0, maka f(x) ≥ 0 dan f(x) > a²;
Jika [tex] \sqrt{f(x)} [/tex] ≥ a dan a ≥ 0, maka f(x) ≥ 0 dan f(x) ≥ a²,
Jika [tex] \sqrt{f(x)} [/tex] < a dan a ≥ 0, maka f(x) ≥ 0 dan f(x) < a² atau 0 ≤ f(x) < a²,
Jika [tex] \sqrt{f(x)} [/tex] ≤ a dan a ≥ 0, maka f(x) ≥ 0 dan f(x) ≤ a² atau 0 ≤ f(x) ≤ a²,
Jika [tex] \sqrt{f(x)} [/tex] < [tex] \sqrt{g(x)} [/tex], maka f(x) ≥ 0, g(x) ≥ 0, dan f(x) < g(x),
Jika [tex] \sqrt{f(x)} [/tex] > [tex] \sqrt{g(x)} [/tex], maka f(x) ≥ 0, g(x) ≥ 0, dan f(x) > g(x),
Jika [tex] \sqrt{f(x)} [/tex] ≤ [tex] \sqrt{g(x)} [/tex], maka f(x) ≥ 0, g(x) ≥ 0, dan f(x) ≤ g(x),
Jika [tex] \sqrt{f(x)} [/tex] ≥ [tex] \sqrt{g(x)} [/tex], maka f(x) ≥ 0, g(x) ≥ 0, dan f(x) ≥ g(x).
Contoh : https://brainly.co.id/tugas/7144413
Semangat!
Stop Copy Paste!